скачать Рабочая программа учебного курса «геометрия» в 11 классе (базовый уровень) ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа учебного курса геометрии для 10 класса составлена на основе Примерной программы среднего (полного) общего образования по математике и программы для общеобразовательных учреждений по геометрии 10 - 11 классы (к учебному комплекту по геометрии для 10 - 11 классов авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др.), составитель Бурмистрова Т.А.-М.: Просвещение, 2009. Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике . Рабочая программа составлена в соответствии с программой для общеобразовательных учреждений по геометрии 10 - 11 классы, Бурмистрова Т.А.-М.: Просвещение,2008., изменения в изучении содержания материала не внесены . Программа рассчитана на 68 ч (2 часа в неделю), в том числе контрольных работ - 5 , включая итоговую контрольную работу. Промежуточная аттестация проводится в форме тестов, контрольных и самостоятельных работ. Итоговая аттестация – согласно Уставу образовательного учреждения. Для реализации рабочей программы используется учебно-методический комплект учителя: Геометрия: учеб, для 10—11 кл. / [Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др.]. — М.: Просвещение, 2004-2009. Зив Б.Г. Геометрия: дидакт. материалы для 11 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2004—2009. Изучение геометрии в 10, 11 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 — 2009 учебно-методический комплект ученика: Геометрия: учеб, для 10—11 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004-2009. Цель изучения: овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей; формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Задачи изучения: изучить понятия вектора; развить пространственные представления и изобразительные умения; освоить основные факты и методы стереометрии, познакомиться с простейшими пространственными телами и их свойствами; овладеть символическим языком математики, выработать формально-оперативные математические умения и научиться применять их к решению геометрических задач; сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений. Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные. Формы контроля: Самостоятельная работа, контрольная работа, зачёт, работа по карточке. Технические средства обучения Компьютер, медиапроектор ^ Глава IV: Векторы в пространстве (6 часов) Основная цель: обобщить изученный в базовой школе материал о векторах на плоскости, дать систематические сведения о действиях с векторами в пространстве. Основное внимание уделяется решению задач, так как при этом учащиеся овладевают векторным методом. В результате изучения данной главы учащиеся должны: Знать: пределение вектора в пространстве, основные действия с векторами в пространстве; уметь применять их при решении задач. Уметь: определять равные векторы; применять на практике правила сложения и вычитания векторов; применять на практике правила сложения нескольких векторов в пространстве; применять на практике правило умножения вектора на число и основное свойство этого правила. ^ Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах. Угол между векторами. Вычисление углов между прямыми и плоскостями. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос. ^ Знать: понятие прямоугольной системы координат в пространстве; понятие координат вектора в прямоугольной системе координат; понятие радиус-вектора произвольной точки пространства; формулы координат середины отрезка, длины вектора через его координаты, расстояние между двумя точками; понятие угла между векторами; понятие скалярного произведения векторов; формулу скалярного произведения в координатах; свойства скалярного произведения; понятие движения пространства и основные виды движения. Уметь: строить точки в прямоугольной системе координат по заданным её координатам и находить координаты точки в заданной системе координат; выполнять действия над векторами с заданными координатами; доказывать, что координаты точки равны соответствующим координатам её радиус-вектора, координаты любого вектора равны разностям соответствующих координат его конца и начала; решать простейшие задачи в координатах; вычислять скалярное произведение векторов и находить угол между векторами по их координатам; вычислять углы между прямыми и плоскостям; строить симметричные фигуры. ^ Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости Касательная плоскость к сфере .Площадь сферы. ^ Знать: понятие цилиндрической поверхности, цилиндра и его элементов(боковая поверхность, основания, образующие, ось, высота, радиус; формулы для вычисления площадей боковой и полной поверхностей цилиндра; понятие конической поверхности, конуса и его элементов(боковая поверхность, основание, вершина, образующая, ось, высота), усечённого конуса; формулы для вычисления площадей боковой и полной поверхностей конуса и усечённого конуса; понятия сферы, шара и их элементов(центр, радиус, диаметр); уравнение сферы в заданной прямоугольной системе координат; взаимное расположение сферы и плоскости; теоремы о касательной плоскости к сфере; формулу площади сферы. Уметь: решать задачи на вычисление боковой и полной поверхностей цилиндра; решать задачи на вычисление боковой и полной поверхностей конуса и усечённого конуса; решать задачи на вычисление площади сферы. ^ Понятие объёма. Объём прямоугольного параллелепипеда. Объём прямой призмы. Объём цилиндра. Вычисление объёмов тел с помощью определенного интеграла. Объём наклонной призмы. Объём пирамиды. Объём конуса. Объём шара. Объём шарового сегмента, шарового слоя и шарового сектора. Площадь сферы. ^ » Знать: понятие объёма, основные свойства объёма; формулы нахождения объёмов призмы, в основании которой прямоугольный треугольник и прямоугольного параллелепипеда; правило нахождения прямой призмы; что такое призма, вписана и призма описана около цилиндра; формулу для вычисления объёма цилиндра; способ вычисления объёмов тел с помощью определённого интеграла, основную формулу для вычисления объёмов тел; формулу нахождения объёма наклонной призмы; формулы вычисления объёма пирамиды и усечённой пирамиды; формулы вычисления объёмов конуса и усечённого конуса; формулу объёма шара; определения шарового слоя, шарового сегмента, шарового сектора, формулы для вычисления их объёмов; формулу площади сферы. Уметь: Объяснять, что такое объём тела, перечислять его свойства и применять эти свойства в несложных ситуациях; применять формулы нахождения объёмов призмы при решении задач; решать задачи на вычисления объёма цилиндра; воспроизводить способ вычисления объёмов тел с помощью определённого интеграла; применять формулу нахождения объёма наклонной призмы при решении задач; решать задачи на вычисление объёмов пирамиды и усечённой пирамиды; применять формулы вычисления объёмов конуса и усечённого конуса при решении задач применять формулу объёма шара при решении задач; различать шаровой слой, сектор, сегмент и применять формулы для вычисления их объёмов в несложных задачах; применять формулу площади сферы при решении задач. ^ Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей. Многогранники. Метод координат в пространстве. Цилиндр, конус и шар. Объёмы тел. Знать: основные определения и формулы изученные в курсе геометрии. Уметь: применять формулы при решении задач. Требования к уровню подготовки обучающихся в 11 классе В результате изучения курса геометрии 11 класса обучающиеся должны: знать/понимать существо понятия математического доказательства; примеры доказательств; как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания; каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики; смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации; уметь пользоваться языком геометрии для описания предметов окружающего мира; распознавать геометрические фигуры, различать их взаимное расположение; изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур; распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; в простейших случаях строить сечения и развертки пространственных тел; проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами; решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии; проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи в пространстве; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: описания реальных ситуаций на языке геометрии; расчетов, включающих простейшие тригонометрические формулы; решения геометрических задач с использованием тригонометрии решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства); построений геометрическими инструментами (линейка, угольник, циркуль, транспортир). Учебно-тематический план
Календарно-тематическое планирование Геометрия 11 класс Л.С. Атанасян и др. 2 часа в неделю, всего 68 часов.
^ Контрольная работа № 1 «Метод координат в пространстве» Вариант №1. 10. Найдите координаты вектора ![]() 20. Даны векторы ![]() ![]() ![]() 3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АD1 и ВМ, где М – середина ребра DD1. 4. Вычислите скалярное произведение векторов ![]() ![]() ![]() Вариант №2 10. Найдите координаты вектора ![]() 20. Даны векторы ![]() ![]() ![]() 3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АС и DС1. 4. Вычислите скалярное произведение векторов ![]() ![]() ![]() Контрольная работа № «Цилиндр, конус и шар» Вариант №1. 10. Осевое сечение цилиндра – квадрат. Площадь основания цилиндра равна ![]() 20. Высота конуса равна 6см. Угол при вершине осевого сечения равен ![]() а) Найти площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен ![]() б) Найти площадь боковой поверхности конуса. 3. Диаметр шара равен 2р. Через конец диаметра проведена плоскость под углом ![]() Вариант №2 10. Осевое сечение цилиндра – квадрат, диагональ которого равна 4см. Найдите площадь полной поверхности цилиндра. 20. Радиус основания конуса равен 6см, а образующая наклонена к плоскости основания под углом ![]() а) Найти площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен ![]() б) Найти площадь боковой поверхности конуса. 3. Диаметр шара равен 4р. Через конец диаметра проведена плоскость под углом ![]() Контрольная работа № 3 «Объёмы тел» Вариант №1. 10. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол ![]() 20. Объём цилиндра равен ![]() ![]() 3. В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2р, а прилежащий угол равен ![]() ![]() Вариант №2. 10.В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса. 20. Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объёмов шара и цилиндра. 3. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2р, а прилежащий угол равен ![]() ![]() В каждой контрольной работе кружочком отмечены задания, соответствующие уровню обязательной подготовки. ^ Список литературы:
Дополнительная литература:
Интернет-ресурс 1. www. edu - "Российское образование" Федеральный портал. 2. www. school.edu - "Российский общеобразовательный портал". 3. www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов 4. www.mathvaz.ru - docье школьного учителя математики 5. www.it-n.ru "Сеть творческих учителей" 6. www .festival.1september.ru Фестиваль педагогических идей "Открытый урок" 7. www.shomtaya.ucoz.ru/ Персональный сайт - Шомахова Таисия Исмаиловна. ![]()
|