* законченный учебник и руководство по языку icon

* законченный учебник и руководство по языку


1 чел. помогло.
Смотрите также:
Рабочая программа по английскому языку 8 класс...
Рабочая программа по русскому языку в 7 классе. Составитель: Кучерюк Е. Н...
Домашнее задание по русскому языку на 4 сессию Учебник...
Учебник по русскому языку. 10-11 класс. 120...
Тематическое планирование по английскому языку предмет Класс...
Тематическое планирование по английскому языку предмет Класс...
Домашнее задание по английскому языку для 5б класса. Учебник стр. 183-188.,Упр. 17 знать перевод...
Для анализа предлагается отрывок из произведения или законченный ху­дожественный текст объемом...
Приказ № от 2011 Рабочая программа по русскому языку для 6 класса Муниципальное...
Тематическое планирование уроков литературы в пятых классах...
Тематическое планирование уроков литературы в пятых классах...
Руководство по старославянскому языку. М., 1952. Ван-Вейк Н...



страницы: 1   ...   19   20   21   22   23   24   25   26   ...   134
вернуться в начало

2.7 Упражнения




1. (*1) Запустить программу "Hello, world" (см. $$1.3.1).

2. (*1) Для каждого описания из $$2.1 сделать следующее: если описание

не является определением, то написать соответствующее определение;

если же описание является определением, написать для него описание,

которое не являлось бы одновременно и определением.

3. (*1) Напишите описания следующих объектов: указателя на символ;

массива из 10 целых; ссылки на массив из 10 целых; указателя

на массив символьных строк; указателя на указатель на символ;

целого-константы; указателя на целое-константу; константного

указателя на целое. Описания снабдить инициализацией.

4. (*1.5) Напишите программу, которая печатает размеры основных типов

и типа указателя. Используйте операцию sizeof.

5. (*1.5) Напишите программу, которая печатает буквы от 'a' до 'z' и цифры

от '0' до '9' и их целые значения. Проделайте то же самое для других

видимых символов. Проделайте это, используя шестнадцатеричную

запись.

6. (*1) Напечатайте последовательность разрядов представления указателя

0 на вашей машине. Подсказка: см.$$2.6.2.

7. (*1.5) Напишите функцию, печатающую порядок и мантиссу параметра типа

double.

8. (*2) Каковы на используемой вами машине наибольшие и наименьшие

значения следующих типов: char, short,int,long, float, double,

long double, unsigned, char*, int* и void*? Есть ли какие-то

особые ограничения на эти значения? Например, может ли int* быть

нечетным целым? Как выравниваются в памяти объекты этих типов?

Например, может ли целое иметь нечетный адрес?

9. (*1) Какова максимальная длина локального имени, которое

можно использовать в вашей реализации С++ ? Какова максимальная

длина внешнего имени? Есть ли какие-нибудь ограничения на символы,

которые можно использовать в имени?

10. (*1) Напишите функцию, которая меняет местами значения двух целых.

В качестве типа параметров используйте int*. Напишите другую функцию

с тем же назначением, используя в качестве типа параметров int&.

11. (*1) Каков размер массива str в следующем примере:

char str[] = "a short string";

Какова длина строки "a short string"?

12. (*1.5) Составьте таблицу из названий месяцев года и числа дней

в каждом из них. Напишите программу, печатающую ее. Проделайте

это дважды: один раз - используя массивы для названий месяцев

и количества дней, а другой раз - используя массив структур,

каждая из которых содержит название месяца и количество дней в нем.

13. (*1) С помощью typedef определите типы: unsigned char, константный

unsigned char, указатель на целое, указатель на указатель на

символ, указатель на массив символов, массив из 7 указателей

на целое, указатель на массив из 7 указателей на целое и массив из

8 массивов из 7 указателей на целое.

14. (*1) Определить функции f(char), g(char&) и h(const char&) и

вызвать их, используя в качестве параметров 'a', 49, 3300, c, uc, и

sc, где c - char, uc - unsigned char и sc - signed char. Какой

вызов является законным? При каком вызове транслятору придется

завести временную переменную?


^

* ГЛАВА 3. ВЫРАЖЕНИЯ И ОПЕРАТОРЫ




"Но с другой стороны не следует

забывать про эффективность"


(Джон Бентли)


С++ имеет сравнительно небольшой набор операторов, который позволяет

создавать гибкие структуры управления, и богатый набор операций для

работы с данными. Основные их возможности показаны в этой главе на одном

завершенном примере. Затем приводится сводка выражений, и подробно

обсуждаются операции преобразования типа и размещение в свободной памяти.

Далее дана сводка операторов, а в конце главы обсуждается выделение

текста пробелами и использование комментариев.

3.1 Калькулятор




Мы познакомимся с выражениями и операторами на примере программы

калькулятора. Калькулятор реализует четыре основных арифметических

действия в виде инфиксных операций над числами с плавающей точкой.

В качестве упражнения предлагается добавить к калькулятору

переменные. Допустим, входной поток имеет вид:


r=2.5

area=pi*r*r


(здесь pi имеет предопределенное значение). Тогда программа калькулятора

выдаст:


2.5

19.635


Результат вычислений для первой входной строки равен 2.5, а результат

для второй строки - это 19.635.

Программа калькулятора состоит из четырех основных частей:

анализатора, функции ввода, таблицы имен и драйвера. По сути - это

транслятор в миниатюре, в котором анализатор проводит синтаксический

анализ, функция ввода обрабатывает входные данные и проводит

лексический анализ, таблица имен хранит постоянную информацию, нужную

для работы, а драйвер выполняет инициализацию,

вывод результатов и обработку ошибок. К такому калькулятору можно

добавить много других полезных возможностей, но программа его и так

достаточно велика (200 строк), а введение новых возможностей

только увеличит ее объем, не давая дополнительной

информации для изучения С++.

3.1.1 Анализатор




Грамматика языка калькулятора определяется следующими правилами:


программа:

END // END - это конец ввода

список-выражений END


список-выражений:

выражение PRINT // PRINT - это '\n' или ';'

выражение PRINT список-выражений


выражение:

выражение + терм

выражение - терм

терм


терм:

терм / первичное

терм * первичное

первичное


первичное:

NUMBER // число с плавающей запятой в С++

NAME // имя в языке С++ за исключением '_'

NAME = выражение

- первичное

( выражение )


Иными словами, программа есть последовательность строк, а каждая

строка содержит одно или несколько выражений, разделенных точкой

с запятой. Основные элементы выражения - это числа, имена и

операции *, /, +, - (унарный и бинарный минус) и =. Имена

необязательно описывать до использования.

Для синтаксического анализа используется метод, обычно называемый

рекурсивным спуском. Это распространенный и достаточно очевидный

метод. В таких языках как С++, то есть в которых операция вызова

не сопряжена с большими накладными расходами, это метод эффективен.

Для каждого правила грамматики имеется своя функция, которая вызывает

другие функции. Терминальные символы (например, END, NUMBER, + и -)

распознаются лексическим анализатором get_token(). Нетерминальные

символы распознаются функциями синтаксического анализатора expr(),

term() и prim(). Как только оба операнда выражения или подвыражения

стали известны, оно вычисляется. В настоящем трансляторе в этот

момент создаются команды, вычисляющие выражение.

Анализатор использует для ввода функцию get_token().

Значение последнего вызова get_token() хранится в глобальной переменной

curr_tok. Переменная curr_tok принимает значения элементов перечисления

token_value:


enum token_value {

^ NAME, NUMBER, END,

PLUS='+', MINUS='-', MUL='*', DIV='/',

PRINT=';', ASSIGN='=', LP='(', RP=')'

};

token_value curr_tok;


Для всех функций анализатора предполагается, что get_token() уже

была вызвана, и поэтому в curr_tok хранится следующая лексема,

подлежащая анализу. Это позволяет анализатору заглядывать на одну

лексему вперед. Каждая функция анализатора всегда читает

на одну лексему больше, чем нужно для распознавания того правила,

для которого она вызывалась. Каждая функция анализатора вычисляет

"свое" выражение и возвращает его результат. Функция expr() обрабатывает

сложение и вычитание. Она состоит из одного цикла, в котором

распознанные термы складываются или вычитаются:


double expr() // складывает и вычитает

{

double left = term();


for(;;) // ``вечно''

switch(curr_tok) {

case PLUS:

get_token(); // случай '+'

left += term();

break;

case MINUS:

get_token(); // случай '-'

left -= term();

break;

default:

return left;

}

}


Сама по себе эта функция делает немного. Как принято в

высокоуровневых функциях больших программ, она выполняет задание,

вызывая другие функции. Отметим, что выражения вида 2-3+4

вычисляются как (2-3)+4, что предопределяется правилами грамматики.

Непривычная запись for(;;) - это стандартный способ задания бесконечного

цикла, и его можно обозначить словом "вечно". Это вырожденная форма

оператора for, и альтернативой ей может служить оператор while(1).

Оператор switch выполняется повторно до тех пор, пока не

перестанут появляться операции + или - , а тогда по умолчанию выполняется

оператор return (default).

Операции += и -= используются для выполнения операций сложения и

вычитания. Можно написать эквивалентные присваивания: left=left+term() и

left=left-term(). Однако вариант left+=term() и left-=term() не

только короче, но и более четко определяет требуемое действие. Для бинарной

операции @ выражение x@=y означает x=x@y, за исключением того, что x

вычисляется только один раз. Это применимо к бинарным операциям:


+ - * / % & | ^ << >>


поэтому возможны следующие операции присваивания:


+= -= *= /= %= &= |= ^= <<= >>=


Каждая операция является отдельной лексемой, поэтому a + =1

содержит синтаксическую ошибку (из-за пробела между + и =). Расшифровка

операций следующая: % - взятие остатка, &, | и ^ - разрядные логические

операции И, ИЛИ и Исключающее ИЛИ; << и >> сдвиг влево и сдвиг вправо.

Функции term() и get_token() должны быть описаны до определения expr().

В главе 4 рассматривается построение программы в виде совокупности

файлов. За одним исключением, все программы калькулятора можно составить

так, чтобы в них все объекты описывались только один раз и до их

использования. Исключением является функция expr(), которая вызывает

функцию term(), а она, в свою очередь, вызывает prim(), и уже та, наконец,

вызывает expr(). Этот цикл необходимо как-то разорвать, для чего вполне

подходит заданное до определения prim() описание:


double expr(); // это описание необходимо


Функция term() справляется с умножением и делением аналогично

тому, как функция expr() со сложением и вычитанием:


double term() // умножает и складывает

{

double left = prim();


for(;;)

switch(curr_tok) {

case MUL:

get_token(); // случай '*'

left *= prim();

break;

case DIV:

get_token(); // случай '/'

double d = prim();

if (d == 0) return error("деление на 0");

left /= d;

break;

default:

return left;

}

}


Проверка отсутствия деления на нуль необходима, поскольку

результат деления на нуль неопределен и, как правило, приводит к

катастрофе.

Функция error() будет рассмотрена позже. Переменная d появляется в

программе там, где она действительно нужна, и сразу же инициализируется.

Во многих языках описание может находиться только в начале блока.

Но такое ограничение может искажать естественную структуру программы и

способствовать появлению ошибок.

Чаще всего не инициализированные локальные переменные

свидетельствуют о плохом стиле программирования. Исключение составляют

те переменные, которые инициализируются операторами ввода, и переменные

типа массива или структуры, для которых нет традиционной

инициализации с помощью одиночных присваиваний. Следует напомнить, что =

является операцией присваивания, тогда как == есть операция сравнения.

Функция prim, обрабатывающая первичное, во многом похожа на

функции expr и term(). Но раз мы дошли до низа в иерархии вызовов,

то в ней кое-что придется сделать. Цикл для нее не нужен:


double number_value;

char name_string[256];


double prim() // обрабатывает первичное

{

switch (curr_tok) {

case NUMBER: // константа с плавающей точкой

get_token();

return number_value;

case NAME:

if (get_token() == ASSIGN) {

name* n = insert(name_string);

get_token();

n->value = expr();

return n->value;

}

return look(name_string)->value;

case MINUS: // унарный минус

get_token();

return -prim();

case LP:

get_token();

double e = expr();

if (curr_tok != RP) return error("требуется )");

get_token();

return e;

case END:

return 1;

default:

return error("требуется первичное");

}

}


Когда появляется NUMBER (то есть константа с плавающей точкой),

возвращается ее значение. Функция ввода get_token() помещает значение

константы в глобальную переменную number_value. Если в программе

используются глобальные переменные, то часто это указывает на то, что

структура не до конца проработана, и поэтому требуется некоторая

оптимизация. Именно так обстоит дело в данном случае. В идеале лексема

должна состоять из двух частей: значения, определяющего вид лексемы

(в данной программе это token_value), и (если необходимо) собственно

значения лексемы. Здесь же имеется только одна простая переменная

curr_tok, поэтому для хранения последнего прочитанного значения NUMBER

требуется глобальная переменная number_value. Такое решение проходит

потому, что калькулятор во всех вычислениях вначале выбирает одно число,

а затем считывает другое из входного потока. В качестве упражнения

предлагается избавиться от этой излишней глобальной переменной

($$3.5 [15]).

Если последнее значение NUMBER хранится в глобальной переменной

number_value, то строковое представление последнего значения NAME

хранится в name_string. Перед тем, как что-либо делать с именем,

калькулятор должен заглянуть вперед, чтобы выяснить, будет ли ему

присваиваться значение, или же будет только использоваться существующее

его значение. В обоих случаях надо обратиться к таблице имен. Эта таблица

рассматривается в $$3.1.3; а здесь достаточно только знать, что она

состоит из записей, имеющих вид:


struct name {

char* string;

name* next;

double value;

};


Член next используется только служебными функциями, работающими

с таблицей:


name* look(const char*);

name* insert(const char*);


Обе функции возвращают указатель на ту запись name, которая соответствует

их параметру-строке. Функция look() "ругается", если имя не было

занесено в таблицу. Это означает, что в калькуляторе можно использовать

имя без предварительного описания, но в первый раз оно может

появиться только в левой части присваивания.





оставить комментарий
страница23/134
Дата20.09.2011
Размер7.16 Mb.
ТипЗакон, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   ...   19   20   21   22   23   24   25   26   ...   134
средне
  1
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

База данных защищена авторским правом ©exdat 2000-2014
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

Рейтинг@Mail.ru
наверх