Методические рекомендации для учителей по подготовке учащихся основной школы к государственной (итоговой) аттестации в независимой форме по Физике Автор-составитель: А. С. Спирин методист icon

Методические рекомендации для учителей по подготовке учащихся основной школы к государственной (итоговой) аттестации в независимой форме по Физике Автор-составитель: А. С. Спирин методист


1 чел. помогло.

Смотрите также:
Методические рекомендации для учителей по подготовке учащихся основной школы к государственной...
Методические рекомендации для учителей по подготовке учащихся основной школы к государственной...
Методические рекомендации для учителей по подготовке учащихся основной школы к государственной...
Методические рекомендации для учителей по подготовке учащихся основной школы к государственной...
Методические рекомендации для учителей по подготовке обучающихся основной школы к...
Методические рекомендации для учителей по подготовке обучающихся основной школы к...
Методические рекомендации об использовании результатов государственной (итоговой) аттестации...
Методические рекомендации для учителей обществознания по подготовке выпускников основной школы к...
Методические рекомендации для учителей обществознания по подготовке выпускников основной школы к...
Методические рекомендации для учителей истории по сопровождению государственной (итоговой)...
Методические рекомендации для учителей по подготовке обучающихся основной школы к...
Методические рекомендации для учителей русского языка и литературы по подготовке обучающихся...



скачать


Методические рекомендации для учителей по подготовке учащихся основной школы к государственной (итоговой) аттестации в независимой форме по Физике


Автор-составитель: А.С. Спирин – методист

кафедры естественнонаучного образования

ГОУ ДПО «СарИПКиПРО»


Содержание

Пример 6 9



Введение


В 2008 году впервые в ряде регионов государственная (итоговая) аттестации выпускников IX классов по физике проводилась в новой форме. Контрольные измерительные материалы (КИМ) для проведения экзамена представляли собой письменную работу, которая оценивала общеобразовательную подготовку учащихся по физике за курс основной школы и обеспечивала необходимую дифференциацию выпускников при отборе в профильные классы.

Содержание экзаменационной работы для девятиклассников разрабатывалось на основе государственного стандарта основного общего образования по физике (приложение к Приказу Минобразования России от 05.03.2004 №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования»). При этом раздел стандарта «Обязательный минимум содержания основных образовательных программ» являлся основой для составления Кодификатора элементов содержания по физике для составления КИМ, а раздел «Требования к уровню подготовки выпускников» — для формирования перечня видов деятельности, на проверку которых ориентированы задания экзаменационной работы для выпускников IX классов общеобразовательных учреждений.

Разработанная на основе образовательного стандарта модель экзаменационной работы по физике предусматривает проверку понимания учащимися основных теоретических положений школьного курса физики, выявление уровня сформированности умения решать задачи и освоенности экспериментальных умений.

При разработке документов для новой формы экзамена соблюдалась преемственность как с традиционной системой итогового контроля (сдача устного экзамена по билетам), так и с экзаменационной моделью единого государственного экзамена по физике (в первую очередь с форматом представления заданий и системой оценивания).

Отличительной чертой новой формы экзамена является использование специальных серий заданий на основе текстов физического содержания. Эти задания направлены на проверку сформированности различных информационных умений (понимание смысла использованных в тексте физических терминов, перевод информации из одной знаковой системы в другую, применение информации из текста в измененной ситуации и т.п.) и являются хорошей основой для перехода в дальнейшем на широкое использование в экзаменационных материалах компетентностно-ориентированных заданий.


^

Особенности структуры экзаменационной работы в 2009 году



В 2009 году общая структура контрольных измерительных материалов предыдущего года будет сохранена. Изменения связаны с расширением спектра проверяемых видов деятельности.

Задания с выбором ответа, проверяющие методологические умения, будут содержать ситуации, требующие от экзаменуемого определить цели исследования, выбрать для его проведения измерительные приборы и оборудование (по рисункам и фотографиям), проанализировать результаты наблюдения или опыта и сформулировать выводы по результатам проведенного исследования. Ниже приведены примеры заданий, проверяющих умение анализировать экспериментальные данные и делать выводы.

Пример 1

На рисунке представлен график зависимости силы упругости (^ F), возникающей в металлической проволоке от степени ее растяжения (х).



По результатам проведенного опыта закон Гука выполняется на участке

1)

OA

2)

AB

3)

BC

4)

AC

Пример 2

Ученик проводил опыты с двумя разными резисторами, измеряя силы тока, проходящие через них при разных напряжениях на резисторах, и результаты заносил в таблицу:

U, В

0

1

2

3

I1

0

0,4

0,8

1,2

I2, А

0

0,2

0,5

0,9

Прямая пропорциональная зависимость между силой тока в резисторе и напряжением на концах резистора

1)

выполняется только для первого резистора

2)

выполняется только для второго резистора

3)

выполняется для обоих резисторов

4)

не выполняется ни для какого из резисторов



Экспериментальные задания с развернутым ответом будут проверять не только умение проводить косвенные измерения, но и представлять экспериментальные данные в виде таблиц и графиков, а на основании полученных данных делать выводы о зависимости одной физической величины от другой.

При разработке модели экзамена по физике было решено (в силу сложности подготовки оборудования к проведению экзамена) вводить различные типы экспериментальных заданий постепенно. Такого типа заданий в перспективе будет четыре:

  • проведение прямых измерений физических величин и расчет по полученным данным зависимого от них параметра;

  • исследование зависимости одной физической величины от другой и построение графика или таблицы полученной зависимости;

  • проверка заданных предположений (прямые измерения физических величин и сравнение заданных соотношений между ними);

  • наблюдение явлений и постановка опытов (на качественном уровне) по выявлению факторов, влияющих на их протекание.

Экспериментальное задание в 2008 году контролировало только умение проводить косвенные измерения физических величин. В 2009 году дополнительно включаются задания, проверяющие умение представлять экспериментальные исследования в виде таблиц и графиков и на основании полученных экспериментальных данных делать выводы о зависимости одной величины от другой. Ниже приведен пример такого задания.

Пример 3

Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и набор из 3-х грузов, соберите экспериментальную установку для исследования зависимости силы упругости, возникающей в пружине, от степени растяжения пружины. Определите растяжение пружины, подвешивая к ней поочередно один, два и три груза. Для определения веса грузов воспользуйтесь динамометром.

В бланке ответов:

  1. сделайте рисунок экспериментальной установки;

  2. укажите результаты измерения веса грузов и удлинения пружины для трех случаев в виде таблицы (или графика);

  3. сформулируйте вывод о зависимости силы упругости, возникающей в пружине, от степени растяжения пружины.

Полное правильное выполнение задания такого типа должно включать следующие элементы:

  • схематичный рисунок экспериментальной установки;

  • верно записанные результаты прямых измерений (в данном случае удлинения пружины и веса грузов для трех измерений);

  • правильно сформулированный вывод.

На экзамене каждому учащемуся выдается комплект оборудования, в котором собраны все необходимые и достаточные для выполнения экспериментального задания приборы и материалы. В связи с этим пока не предполагается оценивание умения самостоятельного выбора оборудования для заданной цели эксперимента. Основанием для конструирования системы оценивания становятся прямые измерения (правильное включение или установка прибора, определение его цены деления и выполнение правил снятия показания прибора или измерительного инструмента). Сформированность этих умений оценивается по результатам записи прямых измерений, которые должны укладываться в заданные в каждом случае границы, учитывающие погрешности измерений. Оценка погрешностей измерений при выполнении экспериментального задания не требуется.

Полный перечень комплектов оборудования, необходимый для выполнения экспериментальных заданий, указывается в приложении к спецификации экзаменационной работы и публикуется вместе с материалами для экспертов. Комплекты, необходимые для проведения экзамена в конкретном регионе, указываются в специальном приложении к КИМ для организаторов экзамена. Кроме того, организаторам предлагается Примерная инструкция по обеспечению безопасного труда в процессе проведения государственной (итоговой) аттестации выпускников основной школы по физике.

Для каждого задания в текстах для экспертов приводятся следующие сведения:

  1. характеристика оборудования, в котором указывается перечень оборудования из соответствующего комплекта;

  2. образец возможного выполнения задания, в котором отмечены все элементы, подлежащие оцениванию, и приведены возможные границы измерений при использовании указанного оборудования, а также приведено указание экспертам по оценке границ интервала или комментарии по анализу полученных результатов;

  3. Критерии оценки выполнения задания, где описано полное правильно выполнение задания, указаны величины, для которых в данном случае проводятся прямые измерения, и перечислены условия выставления баллов (от 0 до 4).

В силу различных подходов в разных регионах страны к комплектованию кабинетов физики при проведении экзамена предусмотрена процедура возможной замены рекомендуемого оборудования на аналогичное с другими характеристиками. В этом случае представители региональной экзаменационной комиссии, участвующие в подготовке лабораторного оборудования, в разделе «характеристика оборудования» указывают изменения характеристик используемого оборудования, а в разделе «Образец выполнения задания» исправляют значения измерений и указывают новые допустимые границы. При проверке экзаменационных работ эксперты получают критерии оценивания экспериментальных заданий с учетом внесенных изменений.

В первой части работы планируется увеличить долю заданий, предполагающих обработку и представление информации в различных формах (с помощью графиков, таблиц, рисунков, схем, диаграмм), а также качественных вопросов на проверку понимания явлений, смысла понятий, величин, физических законов и т.п. Ниже приведены три примера заданий, для правильного выполнения которых, кроме соответствующих предметных умений, необходимо умение читать графики, таблицы и диаграммы.

Пример 4

На диаграмме для двух веществ приведены значения количества теплоты, необходимого для нагревания 1 кг вещества на 10^ 0С и для плавления 100 г вещества, нагретого до температуры плавления. Сравните удельные теплоемкости (с1 и с2) двух веществ.



1)

с2 = с 1

2)

с 2 = 1,5 с 1

3)

с 2 = 2 с 1

4)

с 2 =3 с 1


Пример 5

На рисунке даны графики колебаний для двух маятников. Сравните частоты колебаний маятников.



1)

ν1 = 2ν2;

2)

1 = ν2;

3)

1 = ν2;

4)

ν1 = 4ν2;

Пример 6


В процессе нагревания льда на электрической плитке ученик измерял температуру в зависимости от времени нагревания, и данные заносил в таблицу. В каком агрегатном состоянии находился лед в момент времени t = 22 мин?


^ Время, мин.

0

10

20

21

22

23

24

Температура, 0С

-18

-9

-1

0

0

0

1




1)

Все вещество находилось в твердом состоянии

2)

Все вещество находилось в жидком состоянии

3)

Часть вещества находилась в жидком состоянии, часть – в газообразном

4)

Часть вещества находилась в твердом состоянии, часть – в жидком


Во вторую часть включены 4 задания (19 – 22), к которым требуется привести краткий ответ в виде набора цифр или числа. Задания 19 – 20 представляли собой задания на установление соответствия позиций, представленных в двух множествах. Это были задания базового уровня, проверяющие усвоение наиболее важных физических понятий, явлений и законов, а также умение работать с информацией физического содержания. Задания 21 и 22 содержали расчетные задачи. Это задания повышенного уровня с кратким ответом. Они были направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать качественные и расчетные задачи по какой-либо из тем школьного курса физики.

Часть 3 содержит 4 задания (23 – 26), для которых необходимо привести развернутый ответ. Задания 23 – 25 третьей части являются заданиями высокого уровня сложности. Задание 26 – это задания повышенного уровня сложности.

Задание 23 представляли собой практическую работу, для выполнения которой необходимо было использовать лабораторное оборудование. Оно проверяло сформированность экспериментальных умений использовать физические приборы и измерительные инструменты для определения физических величин; представлять результаты измерений в виде таблиц, графиков и вычислять на этой основе эмпирические зависимости.

Задания 24 – 25 проверяли умение использовать законы физики в измененной или новой ситуации при решении задач. Выполнение таких заданий требовало применения более глубоких знаний в рамках нескольких разделов курса физики, т. е. более высокого уровня подготовки школьников.

Задание 26 – качественный вопрос (задача), представляющий описание явления или процесса из окружающей жизни, для которого учащимся было необходимо привести цепочку рассуждений, объясняющих протекание явления, особенности его свойств и т.п.

В экзаменационной работе были представлены задания разного уровня сложности: базового, повышенного и высокого.

Задания базового уровня были включены в первую часть работы (14 заданий с выбором ответа) и во вторую часть (задания 19 и 20 на установление соответствия позиций, представленных в двух множествах). Это простые задания, проверяющие усвоение наиболее важных физических понятий, явлений и законов, а также умение работать с информацией физического содержания.

Задания повышенного уровня были распределены между всеми частями работы: 4 задания с выбором ответа, 2 задания с кратким ответом и одно задание с развернутым ответом. Все они были направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать качественные и расчетные задачи по какой-либо из тем школьного курса физики.

Задания 23 – 25 третьей части являлись заданиями высокого уровня сложности и проверяли умение использовать законы физики в измененной или новой ситуации при решении задач, а также проводить экспериментальные исследования.


Спецификация экзаменационной работы для проведения государственной итоговой аттестации выпускников IX классов общеобразовательных учреждений 2009 года (в новой форме)

по ФИЗИКЕ


1. Назначение экзаменационной работы – оценить уровень общеобразовательной подготовки по физике учащихся IX классов общеобразовательных учреждений с целью их государственной (итоговой) аттестации. Результаты экзамена могут быть использованы при приеме учащихся в профильные классы средней школы.


^ 2. Документы, определяющие нормативно-правовую базу экзаменационной работы

Содержание экзаменационной работы определяется на основе следующих документов:

1) Обязательный минимум содержания основного общего образования по физике (приложение к Приказу Минобразования России от 19.05.1998 №1236 «Об утверждении временных требований к обязательному минимуму содержания основного общего образования»).

2) Федеральный компонент государственного стандарта основного общего образования по физике (Приказ Минобразования России от 05.03.2004 г. № 1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования»).

^ 3. Характеристика структуры и содержания экзаменационной работы

Каждый вариант экзаменационной работы состоит из трех частей и включает 26 заданий, различающихся формой и уровнем сложности (см. таблицу 1).

Часть 1 содержит 18 заданий с выбором ответа. К каждому заданию приводится 4 варианта ответа, из которых верен только один.

Часть 2 включает 4 задания, к которым требуется привести краткий ответ в виде набора цифр или числа. Задания 19 и 20 представляют собой задания на установление соответствия позиций, представленных в двух множествах. Задания 21 и 22 содержат расчетные задачи.

Часть 3 содержит 4 задания, для которых необходимо привести развернутый ответ. Задание 23 представляет собой практическую работу, для выполнения которой используется лабораторное оборудование.

^ Таблица 1

Распределение заданий экзаменационной работы по частям работы



Части работы

Число заданий

Максимальный первичный балл

Процент максимального первичного балла за задания данной части от максимального первичного балла за всю работу, равного 36

Тип заданий

1

Часть 1

18

18

50

Задания с выбором ответа

2

Часть 2

4

6

17

Задания с кратким ответом

3

Часть 3

4

12

33

Задания с развернутым ответом

Итого: 3

26

36

100





^ 4. Распределение заданий экзаменационной работы по содержанию, проверяемым умениям и видам деятельности

При разработке содержания контрольных измерительных материалов учитывается необходимость проверки усвоения элементов знаний, представленных в кодификаторе элементов содержания по физике. В экзаменационной работе проверяются знания и умения, приобретенные в результате освоения следующих разделов курса физики основной школы:


1. Механические явления.


2. Тепловые явления.


3. Электромагнитные явления.


4. Квантовые явления.


Общее количество заданий в экзаменационной работе по каждому из разделов приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе.

В таблице 2 дано распределение заданий по разделам (темам). Задания части 3 (задания 24-26) проверяют комплексное использование знаний и умений из различных разделов курса физики.

Таблица 2

Распределение заданий по основным содержательным разделам (темам) курса физики в зависимости от формы заданий

^ Разделы (темы) курса физики, включенные в экзаменационную работу

Число заданий

Вся работа

Часть 1

(с выбором ответа)

Часть 2

(с кратким ответом)

Часть 3

(с развернутым ответом)

Механические явления

8-12

6-10

1-2

1-2

Тепловые явления

4-8

2-6

1-2

1-2

Электромагнитные явления

8-12

5-9

1-2

1-2

Квантовые явления

1-4

1-4

0-1



Итого:

26

18

4

4


Экзаменационная работа разрабатывается исходя из необходимости проверки следующих видов деятельности:


1. Владение основным понятийным аппаратом школьного курса физики:

1.1. Понимание смысла понятий.

1.2. Понимание смысла физических явлений.

1.3. Понимание смысла физических величин.

1.4. Понимание смысла физических законов.


2. Владение основами знаний о методах научного познания и экспериментальными умениями.

3. Решение задач различного типа и уровня сложности.

4. Понимание текстов физического содержания.

В таблице 3 приведено распределение заданий по видам деятельности в зависимости от формы заданий.


^ Таблица 3

Распределение заданий по видам деятельности

в зависимости от формы заданий




Владение основами знаний о методах научного познания и экспериментальные умения проверяются в заданиях 15 и 23. Задание 15 с выбором ответа контролирует следующие умения:

– формулировать (различать) цели проведения (гипотезу, выводы) описанного опыта или наблюдения;

– конструировать экспериментальную установку, выбирать порядок проведения опыта в соответствии с предложенной гипотезой;

– проводить анализ результатов экспериментальных исследований, в том числе выраженных в виде таблицы или графика.

Экспериментальное задание 23 в текущем году проверяет:


1) умение проводить косвенные измерения физических величин: плотности вещества, силы Архимеда, коэффициента трения скольжения, жесткости пружины, оптической силы собирающей линзы, электрического сопротивления резистора, работы и мощности тока.


2) умение представлять экспериментальные результаты в виде таблиц или графиков и делать выводы на основании полученных экспериментальных данных: зависимость силы упругости, возникающей в пружине, от степени деформации пружины; зависимость периода колебаний математического маятника от длины нити; зависимость силы тока, возникающей в проводнике, от напряжения на концах проводника; зависимость силы трения скольжения от силы нормального давления; зависимость угла преломления от угла падения на границе стекло-воздух.

Понимание текстов физического содержания проверяется группой заданий 16 – 18. В этом случае для одного и того же текста формулируются вопросы, которые контролируют умения:

– понимать смысл использованных в тексте физических терминов;

– отвечать на прямые вопросы к содержанию текста;

– отвечать на вопросы, требующие сопоставления информации из разных частей текста;

– использовать информацию из текста в измененной ситуации;

– переводить информацию из одной знаковой системы в другую.

Задания, в которых необходимо решить задачи, представлены в различных частях работы. Это два задания повышенного уровня с выбором ответа (они могут стоять на позициях 6, 8 или 13 в зависимости от тематической принадлежности задачи), два задания с кратким ответом во второй части работы и три задания высокого уровня с развернутым ответом. Задание 26 – качественный вопрос (задача), представляющий описание явления или процесса из окружающей жизни, для которого учащимся необходимо привести цепочку рассуждений, объясняющих протекание явления, особенности его свойств и т.п.

Задания для итоговой аттестации по физике характеризуются также по способу представления информации в задании или дистракторах и подбираются таким образом, чтобы проверить умения учащихся читать графики зависимости физических величин, табличные данные или использовать различные схемы или схематичные рисунки.

^ 5. Распределение заданий экзаменационной работы по уровню сложности

В экзаменационной работе представлены задания разных уровней сложности: базового, повышенного и высокого.

Задания базового уровня включены в первую часть работы (14 заданий с выбором ответа) и во вторую часть (задания 19 и 20 на установление соответствия позиций, представленных в двух множествах). Это простые задания, проверяющие усвоение наиболее важных физических понятий, явлений и законов, а также умение работать с информацией физического содержания.

Задания повышенного уровня распределены между всеми частями работы: 4 задания с выбором ответа, 2 задания с кратким ответом и одно задание с развернутым ответом. Все они направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать качественные и расчетные задачи по какой-либо из тем школьного курса физики.

Задания 23 – 25 третьей части являются заданиями высокого уровня сложности и проверяют умение использовать законы физики в измененной или новой ситуации при решении задач, а также проводить экспериментальные исследования. Включение в третью часть работы заданий высокого уровня сложности позволяет дифференцировать учащихся при отборе в профильные классы.

В таблице 4 представлено распределение заданий по уровню сложности.

^ Таблица 4

Распределение заданий по уровню сложности

^ Уровень сложности заданий

Число заданий

Максимальный первичный балл

Процент максимального первичного балла за задания данного уровня сложности от максимального первичного балла за всю работу, равного 36

Базовый

16

18

50

Повышенный

7

8

22

Высокий

3

10

28

Итого:

26

36

100


^ 6. Время выполнения работы

Примерное время на выполнение заданий составляет:

1) для заданий базового уровня сложности – от 2 до 5 минут;


2) для заданий повышенной сложности – от 4 до 10 минут;


3) для заданий высокого уровня сложности – от 15 до 30 минут.


На выполнение всей экзаменационной работы отводится 150 минут.

^ 7. Дополнительные материалы и оборудование

Используется непрограммируемый калькулятор (на каждого ученика) и экспериментальное оборудование. Полный перечень материалов и оборудования указывается в специальном приложении к КИМ для организаторов экзамена.

^ 8. Условия проведения и проверки экзамена (требования к специалистам)

Экзамен проводится в кабинетах физики. На экзамене присутствует специалист по физике, который проводит перед экзаменом инструктаж по технике безопасности и следит за соблюдением правил безопасного труда во время работы учащихся с лабораторным оборудованием.

Проверку экзаменационных работ (заданий с развернутыми ответами) осуществляют специалисты-предметники, прошедшие специальную подготовку для проверки заданий 2009 года.

^ Основные результаты экзамена по физики

в Саратовской области в 2009 году


По результатам проведения ГИА по физике средний балл по Саратовской области составил 3,6. В Вольском (3,3), Воскресенском (3,4), Ивантеевском (3,5), Екатериновском (3,4), Ершовском (3,4), Лысогорском (3,2), Марксовском (3,3), Озинском (3,0), Петровском (3,5), Перелюбском (3,4), Пугачевском (3,5), Романовском (3,0), Саратовском (3,3), Татищевском (3,4), Турковском (3,2), Федоровском (3,1) районах средний балл по экзамену ниже среднего по области. Самый низкий средний балл (3,0) в Озинском и Романовском районах. В 2 районах (Аркадакский, Хвалынский) и г.Саратове самый высокий средний балл по итогам экзамена, он равен 4,1.

По итогам экзамена в 9 классах в 9 районах успеваемость по физике ниже 100%. Это Ершовский (98,5%), Лысогорский (92,9%), Марксовский (98,9%), Озинский (90,0%), Петровский (95,1%), Пугачевский (98,3%), Романовский (66,7%), Федоровский (88,2%), Энгельсский (98,4%) районы. В этих районах за экзаменационную работу некоторые учащиеся получили ниже 9 баллов, что соответствует отметке «2». Средняя успеваемость по физике при проведении ГИА по Саратовской области составила 98,0%. Самая низкая успеваемость (66,7%) в Романовском районе.

Качество знаний по физике при проведении ГИА в среднем по области составило 53,2%, что является низким показателем, если считать, что этот экзамен учащимися сдается по выбору, а результаты экзамена могут быть использованы при комплектовании профильных десятых классов, а также при приеме в учреждения системы начального и среднего профессионального образования без организации дополнительных испытаний. В Вольском (29,5%), Воскресенском (36,4%), Ивантеевском (42,9%), Екатериновском (38,6%), Ершовском (45,5%), Лысогорском (32,1%), Марксовском (29,3%), Озинском (20,0%), Петровском (50,0%), Перелюбском (36,4%), Пугачевском (45,8%), Ровенском (52,2%), Романовском (33,3%), Саратовском (32,0%), Татищевском (40,0%), Турковском (17,6%), Федоровском (17,6%) районах качество знаний ниже среднего по Саратовской области. Самое низкое качество знаний в Озинском районе. Самое высокое качество знаний в Аркадакском районе.

Доля обучающихся подтвердивших годовую отметку на экзамене лежит в пределах 20,7% в г.Саратове до 92,9% в Лысогорском районе.

Максимальный балл (36) на экзамене не набрал никто.
^

Рекомендации для учителей физики по подготовке к экзамену и совершенствованию учебного процесса с учетом результатов экзамена по физики в 2009 году



Анализ результатов ГИА по физике показал, что учащимися усвоены на базовом уровне основные понятия курса физики основной школы, хотя существуют типичные недочеты в усвоении некоторых тем и выполнении заданий, проверяющих отдельные виды деятельности.

Если рассматривать элементы содержания, вызывающие у учащихся наибольшие затруднения, то все они относятся к темам, введенным в основную школу при переходе на новую модель физического образования. К ним относятся, например, вопросы электростатики, электромагнитной индукции и оптики. Очевидно, реальная практика преподавания предмета несколько отстает от требований стандарта образования.

Результаты ГИА по физике показали, что с экспериментальным заданием справились не все учащиеся. Федеральный базисный учебный план предполагает возможность организации для учащихся 9 классов предпрофильной подготовки. Как показывает практика, учителя, занимающиеся предпрофильной подготовкой по физике, стремятся основную часть учебного времени отвести на решение достаточно сложных расчетных задач, существенно углубив тем самым знания учащихся по предмету. Однако не нужно забывать и о практической составляющей курса физики. Выполнение экспериментальных исследований должно стать равноправной составляющей предпрофильной подготовки. Тем самым не только решается задача формирования необходимых для обучения в профильных классах экспериментальных умений, но и существенно возрастает интерес учащихся к изучению физики.

По результатам ГИА среди заданий повышенной сложности наибольшую трудность вызвали качественные задачи с развернутым ответом. Поэтому не следует пренебрегать решением качественных задач. Необходимо включать такие типы задач при преподавании физики и во внеурочную деятельность.

Выпускники основной школы неплохо справились с заданиями, которые содержат прямые вопросы к тексту. Гораздо хуже выполняются задания, в которых требуется извлечь информацию из графиков или сопоставить информацию из разных частей текста. К сожалению, несформированными у учащихся оказываются умения, связанные с преобразованием и использованием информации из текста, то есть именно те умения, которые необходимы для успешного продолжения образования. Необходимо усилить работу на уроках и дома с учебником и научной литературой по извлечению и сопоставлению информации из текста. Включать в различные этапы урока и домашнюю работу учащихся разнообразные задания на понимание текстовой информации, на ее преобразование с учетом цели дальнейшего использования (создание конспекта в виде плана, схемы, таблицы, тезисов, написание аннотаций и рецензий и т.д.). Кроме того, целесообразно шире включать в процесс обучения дополнительную (внешкольную) информацию для обучения оптимальному алгоритму поиска информации и умениям критически оценивать достоверность предложенных текстов.

Как было отмечено выше, сложными для выпускников основной школы оказываются экспериментальные задания. Здесь следует отметить, что современные подходы к формированию методологических умений претерпели существенные изменения по сравнению с традиционной практикой. В настоящее время от учащихся требуется не овладение частными практическими умениями (например, пользоваться рычажными весами или динамометром), а освоение обобщенных представлений о проведении целостного наблюдения, опыта или измерения (от постановки цели до формулировки выводов).

К сожалению, в настоящее время эти требования нашли лишь частичное отражение в использующихся в школах учебно-методических комплектах и дидактических материалах, что и является основной причиной низких результатов выполнения групп заданий, проверяющих методологические умения.

Необходимо использовать методику, при которой лабораторные работы выполняют не иллюстративную функцию к изучаемому материалу, а являются полноправной частью содержания образования и требуют применения исследовательских методов в обучении. Возрастает роль фронтального эксперимента при изучении нового материала, целью которого должно стать формирование у учащихся целостной цепочки действий по проведению опыта.

При планировании практической части программы необходимо обращать внимание не столько на тематическую принадлежность лабораторных работ, сколько на те виды деятельности, которые формируются в процессе их проведения. Желательно, чтобы у учащихся в процессе выполнения различных практических работ была возможность освоить алгоритмы выполнения всех перечисленные выше типов экспериментальных заданий. Так, желательно переносить часть работ с проведения косвенных измерений на исследования по проверке зависимостей между величинами и построение графиков эмпирических зависимостей, поскольку это вид деятельности недостаточно отражен в типовом наборе лабораторных работ.

Приложение 1


^ Требования к уровню подготовки выпускников

Требования к уровню подготовки выпускников — установленные стандартом результаты освоения выпускниками обязательного минимума федерального компонента государственного стандарта общего обра­зования, необходимые для получения государственного документа о достигну­том уровне общего образования.

Требования разработаны в соответствии с обязательным минимумом, преемственны по ступеням общего образования и учебным предметам.

Требования задаются в деятельностной форме (что в результате изуче­ния данного учебного предмета учащиеся должны знать, уметь, использовать в практической деятельности и повседневной жизни).

Требования служат основой разработки контрольно-измерительных ма­териалов для государственной аттестации выпускников образовательных учреждений, реализующих программы основного общего и среднего (полного) общего образования.

В результате изучения физики ученик должен

знать/понимать:

  • смысл понятий: физическое явление, физический закон, вещество, вза­имодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;

  • смысл физических величин: путь, скорость, ускорение, масса, плот­ность, сила, давление, импульс, работа, мощность, кинетическая энергия, по­тенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокус­ное расстояние линзы;

  • смысл физических законов: Паскаля, Архимеда, Ньютона, всемирно­го тяготения, сохранения импульса и механической энергии, сохранения энер­гии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля — Ленца, прямолинейного распространения света, отражения света;

уметь:

  • описывать и объяснять физические явления: равномерное прямо­линейное движение, равноускоренное прямолинейное движение, передачу дав­ления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденса­цию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

  • использовать физические приборы и измерительные инструмен­ты для измерения физических величин: расстояния, промежутка вре­мени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электри­ческого тока;

представлять результаты измерений с помощью таблиц графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, перио­да колебаний груза на пружине от массы груза и от жесткости пружины, тем­пературы остывающего тела от времени, силы тока от напряжения на участ­ке цепи, угла отражения от угла падения света, угла преломления от угла паде­ния света;

  • выражать результаты измерений и расчетов в единицах Меж­дународной системы;

  • приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;

решать задачи на применение изученных физических законов',

осуществлять самостоятельный поиск информации естественно­
научного содержания с использованием различных источников (учебных текс­тов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

использовать приобретенные знания и умения в практической деятель­ности и повседневной жизни для:

  • обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;

  • контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;

  • рационального применения простых механизмов;

  • оценки безопасности радиационного фона.



^

Приложение 2

Памятка. Деятельность педагога в рамках подготовки девятиклассников к итоговой аттестации.



На подготовительном этапе учитель должен обратиться к нормативным документам, определяющим содержание и структуру обучения физики за период основного общего образования (обязательный минимум или федеральный компонент, примерные программы, авторскую программу), и согласовать деятельность на уроках с основными требованиями, предъявляемыми к знаниям, умениям и навыкам выпускников основной школы.


На организационном этапе педагогу необходимо ознакомить обучающихся со структурой и содержанием экзаменационной работы, процедурой проведения экзамена, с критериями оценки составных частей экзаменационной работы.


На содержательном этапе учитель должен осмыслить основные требования, предъявляемые к знаниям, умениям и навыкам выпускников основной школы, и выстроить на завершающем этапе обучения подготовку к итоговой аттестации таким образом, чтобы как можно рациональнее было использовано оставшееся время, отобрав при этом для повторения и обобщения такие темы, которые вызывают затруднение у большинства обучающихся.

^

Приложение 3

Формы контроля на этапе подготовки обучающихся к выполнению экзаменационной работы



Контроль знаний и умений учащихся является важным элементом процесса обучения, и естественно, что разные его стороны привлекают постоянное внимание ученых-методистов и учителей школы. Чтобы составить и провести эффективный контроль знаний и умений учащихся необходимо решить следующие задачи:1)выяснить, каковы цели проведения контроля знаний и умений учащихся; 2)выяснить, какие формы контроля сложились в практике учителей физики и какие рекомендации по проведению контроля дают учителя и методисты-ученые; 3)выяснить, каково место контроля при изучении физики; 4)выяснить, какие формы контроля знаний и умений учащихся целесообразно использовать при изучении различных тем.


Виды контроля знаний и умений учащихся.


1.1. Цели контроля знаний и умений учащихся

Контроль знаний и умений учащихся является важным звеном учебного процесса, от правильной постановки которого во многом зависит успех обучения. В методической литературе принято считать, что контроль является так называемой “обратной связью” между учителем и учеником, тем этапом учебного процесса, когда учитель получает информацию об эффективности обучения предмету. Согласно этому выделяют следующие цели контроля знаний и умений учащихся:

-диагностирование и корректирование знаний и умений учащихся;

-учет результативности отдельного этапа процесса обучения;

-определение итоговых результатов обучения на разном уровне.

Внимательно посмотрев на изложенные выше цели контроля знаний и умений учащихся, можно увидеть, что это есть цели учителя при проведении контрольных мероприятий. Однако главным действующим лицом в процессе обучения какому-либо предмету является ученик, сам процесс обучения – это приобретение знаний и умений учащимися, следовательно, все происходящее на уроках, включая и контрольные мероприятия, должно соответствовать целям самого ученика, должно быть для него личностно важным. Контроль должен восприниматься учащимися не как что-то, нужное лишь учителю, а как этап, на котором ученик может сориентироваться насчет имеющихся у него знаний, убедиться, что его знания и умения соответствуют предъявляемым требованиям.

Может показаться, что изменение целей контроля знаний и умений учащихся – чисто теоретический вопрос и ничего не меняет на практике. Однако это не так. Если учитель будет относиться к контролю как к деятельности, важной для учащихся, сама форма проведения его, обсуждения результатов, проверки может быть иной. Так, например, проверка результатов и проставление отметок может производиться самими учащимися. При такой форме проверки они ощущают значимость контроля, выясняют свои ошибки, при проставлении отметок развиваются самокритичность и ответственность. Такой вид работы никогда бы не появился, однако, если бы учитель рассматривал цели контроля знаний и умений учащихся только как диагностирование и учет знаний.

При такой формулировке целей контрольного этапа обучения становится ясно, что он несет в себе только одну задачу: учет результативности обучения и выявление его пробелов, если они имеются, как учителем, так и, что не менее важно, самими учениками.


1.2. Формы контроля знаний и умений учащихся.

Формы контроля знаний и умений учащихся – многочисленные, разнообразные виды деятельности учащихся при выполнении контрольных заданий. Форм контроля очень много, т.к. каждый учитель вправе придумать и провести собственные, кажущиеся ему наилучшими, контрольные задания. Государственный стандарт физического образования обозначил обязательные требования к форме и содержанию контрольных мероприятий на уроках физики: "Проверка соответствия учебной подготовки школьников требованиям стандарта проводится с помощью специально разработанной системы измерителей достижения стандарта физического образования…. Система измерителей должна быть содержательно валидна (т.е. должна полностью соответствовать требованиям стандарта), надежна (т.е. обеспечивать воспроизводимость полученных при проверке результатов) и объективна (т.е. не должна зависеть от личности проверяющего). Система измерителей может быть представлена в форме традиционных письменных контрольных работ, тестов, включающих задания с выбором ответа или краткими ответами, зачета и др. Все задания, независимо от их формы и того, какие умения они проверяют, считаются равновесомыми, исходя из равной значимости всех требований стандарта. К каждой системе измерителей должны быть представлены критерии оценивания, на основе которых делается вывод о достижении или не достижении учащимся требований государственного стандарта. Система измерителей должна быть инвариантна по отношению к различным типам школ, учебным планам, программе и учебникам.

В школьной практике существует несколько традиционных форм контроля знаний и умений учащихся, которые я представлю в своей работе:

- физический диктант

- тестовое задание

- краткая самостоятельная работа

- письменная контрольная работа

- контрольная лабораторная работа

- устный зачет по изученной теме.


^ 1. Физический диктант – форма письменного контроля знаний и умений учащихся. Он представляет собой перечень вопросов, на которые учащиеся должны дать незамедлительные и краткие ответы. Время на каждый ответ строго регламентировано и достаточно мало, поэтому сформулированные вопросы должны быть четкими и требовать однозначных, не требующих долгого размышления, ответов. Именно краткость ответов физического диктанта отличает его от остальных форм контроля. С помощью физических диктантов можно проверить ограниченную область знаний учащихся:

-буквенные обозначения физических величин, названия их единиц;

-определения физических явлений, формулировки физических законов, связь между физическими величинами, формулировки научных фактов;

-определения физических величин, их единиц, соотношения между единицами.

Именно эти знания могут быть проверены в быстрых и кратких ответах учащихся. Физический диктант не позволяет проверить умения, которыми овладели учащиеся при изучении той или иной темы. Таким образом, быстрота проведения физического диктанта является одновременно как его достоинством, так и недостатком, т.к. ограничивает область проверяемых знаний. Однако эта форма контроля знаний и умений учащихся снимает часть нагрузки с остальных форм, а также, как будет показано ниже, может быть с успехом применена в сочетании с другими формами контроля.

^ 2. Тестовые задания. Здесь учащимся предлагается несколько, обычно 2-3, варианта ответов на вопрос, из которых надо выбрать правильный. Эта форма контроля тоже имеет свои преимущества, неслучайно это одна из наиболее распространенных форм контроля во всей системе образования. Учащиеся не теряют времени на формулировку ответов и их запись, что позволяет охватить большее количество материала за то же время. Наряду со всеми знаниями, усвоение которых учащимися можно проверить с помощью физического диктанта, появляется возможность проверить умения учащихся, связанные с распознаванием физических явлений и ситуаций, соответствующих научным фактам.

Несмотря на все очевидные достоинства, тестовые задания имеют ряд недостатков. Главный из них – это трудность формулирования вариантов ответов на вопросы при их составлении. Если ответы подобраны учителем без достаточного логического обоснования, большинство учащихся очень легко выбирают требуемый ответ, исходя не из имеющихся у них знаний, а только лишь из простейших логических умозаключений и жизненного опыта. Поэтому учителю бывает трудно или даже невозможно составить удачный тест без теоретической подготовки.

Следует однако отметить, что тестовые задания дают возможность проверить ограниченную область знаний и умений учащихся, оставляя в стороне деятельность по созданию физических объектов, воспроизведению конкретных ситуаций, соответствующих научным фактам и физическим явлениям и т.п. По результатам выполнения тестов учитель не может проверить умения учащихся решать комбинированные задачи, способности построения логически связанного ответа в устной форме. Задания с выбором ответа целесообразно применять в тех случаях, когда эта форма контроля знаний имеет преимущества перед другими, например, они особенно удобны с применением различного типа контролирующих машин и компьютеров. Авторы тестовых разработок сходятся во мнении, что тесты не могут заменить других форм контроля, однако что они открывают много новых возможностей перед учителем, проводящим в классе контрольный урок, т.к. снимают трудности, характерные для устных и письменных ответов учащихся на поставленный вопрос

^ 3. Кратковременная самостоятельная работа. Здесь учащимся также задается некоторое количество вопросов, на которые предлагается дать свои обоснованные ответы. В качестве заданий могут выступать теоретические вопросы на проверку знаний, усвоенных учащимися; задачи, на проверку умения решать задачи по данной теме; конкретные ситуации, сформулированные или показанные с целью проверить умение учащихся распознавать физические явления; задания по моделированию (воспроизведению) конкретных ситуаций, соответствующих научным фактам и понятиям. В самостоятельной работе могут быть охвачены все виды деятельности кроме создания понятий, т.к. это требует большего количества времени. При этой форме контроля учащиеся обдумывают план своих действий, формулируют и записывают свои мысли и решения. Понятно, что кратковременная самостоятельная работа требует гораздо больше времени, чем предыдущие формы контроля, и количество вопросов может быть не более 2-3, а иногда самостоятельная работа состоит и из одного задания.

^ 4. Письменная контрольная работа – наиболее распространенная форма в школьной практике. Традиционно «контрольные работы по физике проводятся с целью определения конечного результата в обучении умению применять знания для решения задач определенного типа по данной теме или разделу. Содержание контрольных работ составляют задачи как текстовые, так и экспериментальные». Таким образом составленная контрольная работа позволяет проверить довольно узкий круг знаний и умений учащихся: умение решать задачи по теме, а также различные умения по применению физических знаний при решении экспериментальных задач.Количество вариантов контрольной работы является спорным вопросом. В школе применяется 2,4,6 и даже 8 вариантов, т.к. учителя стараются как можно лучше обеспечить самостоятельность выполнения заданий каждым учеником. Увеличение числа вариантов ведет к увеличению количества времени, требуемого для проверки контрольной работы учителем, а также к появлению трудности, связанной с составлением большого числа вариантов одинаковой сложности.

^ 5. Контрольная лабораторная работа. Ею может стать лабораторная работа, подобная данным в учебнике к изучаемой теме или какой-то эксперимент, связанный с воспроизведением конкретных ситуаций, соответствующих научным фактам и физическим явлениям. Лабораторная работа – достаточно необычная форма контроля, она требует от учащихся не только наличия знаний, но еще и умений применять эти знания в новых ситуациях, сообразительности. Лабораторная работа активизирует познавательную деятельность учащихся, т.к. от работы с ручкой и тетрадью ребята переходят к работе с реальными предметами. Тогда и задания выполняются легче и охотнее. Особенно это заметно в младших классах. Так как лабораторная работа может проверить ограниченный круг деятельности, ее целесообразно комбинировать с такими формами контроля, как физический диктант или тест. Такая комбинация может достаточно полно охватить знания и умения учащихся при минимальных затратах времени, а также снять при этом трудность длинных письменных высказываний.

^ 6. Устный зачет по теме. Это одна из основных форм контроля в старших классах. Его достоинство заключается в том, что он предполагает комплексную проверку всех знаний и умений учащихся. Ученик может решать задачи, потом делать лабораторную работу, а затем беседовать с учителем. Устная беседа с учителем, позволяющая проконтролировать сформированность физического мировоззрения, пробелы в знаниях, рассмотреть непонятные места в курсе, отличает зачет от других форм контроля. Это наиболее индивидуализированная форма. Учитель решает, основываясь на результатах прошлых или промежуточных контрольных мероприятий, какие знания и умения целесообразно проверять у какого ученика: всем даются индивидуальные задания. Зачет требует большого количества времени, и поэтому многие учителя предпочитают освобождать от него часть успевающий учеников. В основном это объясняется стремлением учителей уложиться в отведенный для контроля урок или два.

^

Приложение 4

Тестирование как вид контроля знаний


Одной из актуальных задач, которые ставятся перед российским образованием в рамках концепции модернизации образования, является переход к новой форме проведения итоговой аттестации в 9 и 11 классах.

Основным показателем качества образования является объективная оценка учебных достижений учащихся. Этот показатель важен как для всей системы образования, так и для каждого отдельного ученика.

Объективная оценка учебных достижений осуществляется, как правило, стандартизированными процедурами, при проведении которых все учащиеся находятся в одинаковых (стандартных) условиях и используют примерно одинаковые по свойствам измерительные материалы.

Тестирование используется при текущей, рубежной и итоговой проверке знаний, на вступительных экзаменах в ВУЗы и даже нередко при приёме на работу. Поэтому очень важно со школьной скамьи приучить учащихся к технологии тестирования, научить их к технологии тестирования, научить их свободно оперировать своими знаниями при тестовой форме предъявления заданий.

Преимуществом тестирования является возможность охвата материала по всем разделам физики. Оценивание результатов носит более объективный характер и не зависит от профессиональных и личностный качеств учителя. В результате учащийся может продемонстрировать свои учебные достижения на более широком содержательном поле физики. И все это на фоне сокращения временных затрат на проверку знаний. Тесты логичны и непротиворечивы, интерпретация их однозначна, организация тестирования регламентирована.

Наряду с известными достоинствами у данного метода существуют и недостатки, которые, в основном, связаны с необходимостью подготовки тестов высокого качества. Вторая проблема касается сложности проверки аналитико-синтетических навыков учащихся.

Аттестация в форме тестирования предполагает получение широкого диапазона результатов обучения. Такой тест можно считать суммирующим. Предлагаемая система тестирования сформирована с учетом важных критериев: широта охвата материала курса, сложность и представительность выборки. Как и любая другая форма аттестации, тестирование нацелено на определение степени достижения результатов обучения. В отличие от устной аттестации, суммирующий тест содержит разноплановые задания, которые обеспечивают более глубокую проверку индивидуальных достижений учащихся.

Предлагаемая система тестирования предназначена для определения уровня обученности учащегося на основании некоторых критериев по оценке знаний, умений и навыков. Критерии выбраны, исходя из требований к уровню подготовки, зафиксированных в рамках базового минимума и на основании требований к индивидуальным результатам обучения курсу физики, существующих в реальной практике.

Тестовые материалы ориентированы, в основном, на проверку результативности, мягко лимитированы по времени. Результаты теста учащийся фиксирует на специальном бланке.

Аттестация в форме тестирования является инструментом управления. При использовании тестовых технологий руководитель, не обязательно специалист в области физики, в состоянии определить уровень подготовки учащихся, объективность его оценивания Тестирование позволяет организовать отслеживание (мониторинг) уровня и степени подготовки учащихся. Тесты обладают вариативностью благодаря модульной организации (допускают развитие без изменения структуры). При их подготовке могут уточняться отдельные вопросы и задания, возможно дополнение новыми разработками. Сами тесты могут быть разграничены по уровням сложности или изменены наборы тестовых заданий при формировании вариантов.

В рамках подготовки выпускников к ГИА в учебной деятельности можно использовать предложенные ниже виды тестового контроля.

Тест первого вида направлен на предупреждение неуспеваемости, связанной с наличием пробелов, мешающих успешному усвоению новой информации. Этот тест позволяет не только определить, в какой степени обучающиеся  подготовлены для более глубокого усвоения очередной порции учебного материала и судить о том, какие методы следует принять для ликвидации пробелов.

Тест второго вида применим, как правило, после изучения материала, но перед решением основных, типовых задач на применение полученных знаний. Основной целью этого тестирования ставится проверка правильности воспроизведения и понимания учащимися определений, правил, алгоритмов, так как продуктивного, творческого обучения не может быть на пустом месте, без репродуктивных тренировок.

Тесты третьего вида применяю для заключительного контроля после того, как уже проведены уроки по решению задач на разнообразное применение новых знаний. В такой тест необходимо включить вопросы, для определения глубины усвоения теоретического материала, а не для его простого репродуктивного воспроизведения.

Систематичность в применении тестового контроля, как правило, формирует у обучающихся дисциплинированность и стремление к состязательности в усвоении программного материала.

Для эффективного использования всех форм и методов контроля при подготовке к ГИА по каждому разделу курса Физики необходимо руководствоваться следующими правилами:

  • определить, чего я, как учитель, хочу достичь данной проверкой;

  • определить, что я, как учитель, хочу проверить и оценить;

  • помнить, что проверять следует регулярно, тщательно и разнообразно, концентрируя при этом внимание на главном.

Приложение 5


^ Использование ИКТ при подготовке к государственной (итоговой) аттестации по физике.

Двадцать первый век и окружающее нас информационное обще­ство оказывают серьезное воздействие на каждую из сфер жизни че­ловека, в том числе на школу и вузы — основные институты среднего и высшего образования.

Обучающемуся необходимы умения самостоятельного поиска проблем, постановки задач по их решению для успешного достижения результата в осуществлении любого вида деятельности. Именно эти навыки необходимы человеку для успешной подготовки не только к ГИА, но и жизни в обществе.

^ Интернет-ресурсы в учебном процессе.

Рассмотрим, какие возможности интернет-ресурсов интересны и вос­требованы в процессе организации подготовки к итоговой аттестации на уроке:

  1. Информационные: быстрый поиск и компьютерная визуа­лизация учебной информации.

^ Цель: научить способам поиска, отбора и обработки информации.

Риски: чувство достаточности, полноты и объективности полученной в сети Интернет информа­ции; наличие неконтролируемого цензурой, не несущего воспита­тельного воздействия и не соответствующего общечеловеческим нормам содержания ряда сайтов.

^ Способ предупреждения рис­ков: наличие у учителя и учащихся плана поиска и модели ожида­емого результата; вооружение школьников списком ссылок на необходимые сайты; блокирование возможности открытия не­нужных сайтов.

  1. Технические: иллюстративный и вспомогательный матери­ал, используемый в процессе подготовке к ГИА или как со­провождение приготовленного на урок сообщения.

Цель: развитие способностей самостоятельного планирования и целеполагания; возможность проявить свою индивидуальность; выполнение функций – контроля, оценки, дидактической организации материала, умения систематизировать и предъявлять результаты.

Риски: низкий уровень критичности, предъявляемый как к рабо­те, так и к использованному материалу; отсутствие логики в предъявлении материала.

^ Способ предупреждения: Наличие плана подготовки к ГИА в соответствии с федеральными государственными стандартами общего образования для основной школы.

На уроках физики возможны следующие варианты применения ИКТ:

  • компьютерные тесты, предназначенные для контроля за уровнем усвоения знаний обучающихся и использование на этапе закрепления и повторения;

  • электронные учебники и электронные конспекты уроков, снабженные гипперссылками, анимацией, речью диктора, интересными заданиями, мультимедийными эффектами;

  • создание слайдов с текстовым изображением. Работа с использованием Интернет-сайтов.

Рассмотрим, какие возможности интернет-ресурсов в процессе организации подготовки к итоговой аттестаций во внеурочной дея­тельности:

  1. Коммуникативные: общение со сверстниками, возмож­ность групповой виртуальной деятельности.

Цель: развитие спо­собности брать на себя ответственность, участвовать в совместном принятии решения, делать свой выбор, владеть устным и письменным общением.

^ Риски: снижение качества ра­боты, снижение культуры научной речи.

Способ предупрежде­ния: искусственно созданная группа для виртуального общения, в которую входит и преподаватель, контролирующий процесс об­щения и направляющий научный поиск.
^

Приложение 6

Список литературы для подготовки к экзамену по физики.


В свете изменения формы итоговой аттестации актуальной стала предварительная психолого-педагогическая подготовка участников образовательного процесса к прохождению аттестации. Подготовка включает в себя формирование и развитие психологической, педагогической готовности (наличие знаний, умений и навыков по предмету) и личностной готовности (опыт, особенности личности, необходимые для прохождения процедуры итоговой аттестации).

Навыки, приобретаемые в ходе такой подготовки, не только повышают эффективность подготовки к экзаменам, но и вообще способствуют развитию навыков мыслительной работы, умению мобилизовать себя в решающей ситуации, овладевать собственными эмоциями и т.п.

К экзамену по физики можно подготавливать учащихся по учебникам, включенным в «Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях», помимо учебников, по которым ведется преподавание, рекомендуется использовать следующие издания:


  1. Сборник тестовых заданий для тематического и итогового контроля. Физика. Основная школа (7 –9 класс) /Орлов В.А., Татур А.О. – М.: Интеллект-Центр, 2006

  2. Тематические тесты для подготовки к итоговой аттестации и ЕГЭ. Физика / О.Ф. Кабардин, Л.В. Болотник, М.: Баласс, Изд. Дом РАО, 2005.

  3. ЕГЭ-2007: Физика. Сборник заданий/ Г.Г. Никифоров, В.А.Орлов, Н.К.Ханнанов, М.: Просвещение, Эксмо 2007.

  4. Единый государственный экзамен: Физика: Контрольные измерительные материалы: Репетиционная сессия 1. / Г.Г. Никифоров, Г.А.Чижов – М.: Вентана-Граф, 2006

  5. Единый государственный экзамен: Физика: Контрольные измерительные материалы: Репетиционная сессия 2. / Г.Г. Никифоров, Г.А.Чижов – М.: Вентана-Граф, 2006

  6. Единый государственный экзамен: Физика: Контрольные измерительные материалы: Репетиционная сессия 3. / Г.Г. Никифоров, Г.А.Чижов – М.: Вентана-Граф, 2007

  7. Единый государственный экзамен: Физика: Контрольные измерительные материалы: Репетиционная сессия 4. / Г.Г. Никифоров, Г.А.Чижов – М.: Вентана-Граф, 2007

  8. Единый государственный экзамен: Физика: Контрольные измерительные материалы: Репетиционная сессия 5. / Г.Г. Никифоров, Г.А.Чижов – М.: Вентана-Граф, 2007

  9. Физика: Тренировочные задания тестовой формы с выбором ответа: Рабочая тетрадь для учащихся общеобразовательных учреждений/ С.Ю.Закурдаева, Е.Е.Камзеева. – 2-е изд., испр. – М.: Вентана-Граф, 2007. (Практикум по подготовке к ЕГЭ)

  10. Физика: Тренировочные задания тестовой формы с кратким ответом: Рабочая тетрадь для учащихся общеобразовательных учреждений / С.Ю.Закурдаева, Е.Е.Камзеева. – 2-е изд., испр. – М.: Вентана-Граф, 2007. (Практикум по подготовке к ЕГЭ).

  11. Физика: Тренировочные задания тестовой формы с развернутым ответом: Рабочая тетрадь для учащихся общеобразовательных учреждений / С.Ю.Закурдаева, Е.Е.Камзеева. – 2-е изд., испр. – М.: Вентана-Граф, 2007. (Практикум по подготовке к ЕГЭ).

  12. Готовимся к ЕГЭ. Тесты по физике для контроля и самопроверки /В.А.Орлов. Москва, Илекса, 2008.

  13. ЕГЭ. Физика: Раздаточный материал тренировочных тестов. /Курашова С.А. СПб.: Тригон, 2008.

  14. Курс школьной физики. Пособие по подготовке к ЕГЭ /А.И.Черноуцан, М.: Физматлит, 2008.

  15. ЕГЭ-2008. Физика. Тренировочные задания / А.А. Фадеева. – М.: Эксмо, 2008

  16. ЕГЭ. Физика: Раздаточный материал тренировочных тестов /Курашова С.А. СПб.: Тригон, 2008 (гриф подтвержден)

  17. ЕГЭ-2009. Физика: сборник экзаменационных заданий. Федеральный банк экзаменационных материалов / ФИПИ авторы составители: М.Ю. Демидова, И.И. Нурминский – М.: Эксмо, 2008.

  18. Единый государственный экзамен 2009.Физика. Универсальные материалы для подготовки учащихся/ ФИПИ авторы составители: М.Ю. Демидова, Г. Г. Никифоров, В. А. Орлов, Н. К. Ханнанов– М.: Интеллект-Центр, 2009.

  19. Самое полное издание типовых вариантов реальных заданий ЕГЭ. 2009. Физика/ ФИПИ авторы составители: А. В. Берков, В.А. Грибов- М.: Астрель, 2009.

  20. Государственная итоговая аттестация (по новой форме): 9 класс. Тематические тренировочные задания. Физика/ ФИПИ автор составитель: М.Ю. Демидова – М.: Эксмо, 2008.

  21. ГИА-2009. Экзамен в новой форме. Физика. 9 класс/ ФИПИ авторы составители: Е.Е. Камзеева, М.Ю. Демидова - М.: Астрель, 2009.

  22. Государственная итоговая аттестация выпускников 9 классов в новой форме. Физика. 2009/ ФИПИ авторы составители: Демидова М.Ю., Важеевская  Н.Б., Пурышева Н.С., Камзеева Е.Е. – М.: Интеллект-Центр, 2009.








Скачать 479,41 Kb.
оставить комментарий
А.С. Спирин
Дата16.09.2011
Размер479,41 Kb.
ТипМетодические рекомендации, Образовательные материалы
Добавить документ в свой блог или на сайт

отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх